Quantitative Measurements of α-Synuclein Seeds in CSF Inform Diagnosis of Synucleinopathies
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Diagnosing α-synucleinopathies and assessing target engagement in trials is hindered by the lack of reliable biomarkers. Here, we introduce a first-in-kind quantitative, highly sensitive, and disease-specific diagnostic assay, named Seeding Amplification ImmunoAssay (SAIA), developed and validated to detect synucleinopathy-linked disorders. To this end, we used wide range of specimens, including 37 brain homogenates (BH) and 559 cerebrospinal fluid (CSF) samples from subjects with diverse synucleinopathy disorders, non-synucleinopathy diseases, idiopathic REM sleep behavior disorder (iRBD), and controls. SAIA generated robust amplification results detecting disease-related α-synuclein seeds in BH samples at attogram levels, as referenced to preformed fibrils of α-synuclein. Furthermore, we conducted side-by-side comparisons between SAIA and a traditional Seeding Amplification Assay (SAA), which revealed high concordance. Further, SAIA distinguished synucleinopathies from non-synucleinopathies and controls with sensitivities and specificities ranging between 80-100% and area under the curve values exceeding 0.9. SAIA also accurately identified 24/24 (100%) iRBD cases, considered a prodromal state of PD, with 100% sensitivity and 80% specificity. Further optimization of SAIA through timepoint analyses revealed that shorter incubation times enhanced the assay’s specificity for distinguishing MSA from PD highlighting the potential for improved differentiation between specific synucleinopathies. In conclusion, SAIA represents a novel powerful high throughput method to screen, diagnose and monitor synucleinopathy disorders in living subjects, offering significant improvements over existing methods to assist clinical trials that aim to test disease modifying interventions.