Biological subtyping of autism via cross-species fMRI

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

It is frequently assumed that the phenotypic heterogeneity in autism spectrum disorder reflects underlying pathobiological variation. However, direct evidence in support of this hypothesis is lacking. Here, we leverage cross-species functional neuroimaging to examine whether variability in brain functional connectivity reflects distinct biological mechanisms. We find that fMRI connectivity alterations in 20 distinct mouse models of autism (n=549 individual mice) can be clustered into two prominent hypo- and hyperconnectivity subtypes. We show that these connectivity profiles are linked to distinct signaling pathways, with hypoconnectivity being associated with synaptic dysfunction, and hyperconnectivity reflecting transcriptional and immune-related alterations. Extending these findings to humans, we identify analogous hypo- and hyperconnectivity subtypes in a large, multicenter resting state fMRI dataset of n=940 autistic and n=1036 neurotypical individuals. Remarkably, hypo- and hyperconnectivity autism subtypes are replicable across independent cohorts (accounting for 25.1% of all autism data), exhibit distinct functional network architecture, are behaviorally dissociable, and recapitulate synaptic and immune mechanisms identified in corresponding mouse subtypes. Our cross-species investigation, thus, decodes the heterogeneity of fMRI connectivity in autism into distinct pathway-specific etiologies, offering a new empirical framework for targeted subtyping of autism.

Article activity feed