Targeting Modulated Vascular Smooth Muscle Cells in Atherosclerosis via FAP-Directed Immunotherapy

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Vascular smooth muscle cell (VSMC) and immune cell diversification play a central role in driving atherosclerotic coronary artery disease (CAD) 1–3 . However, the molecular mechanisms governing cell state transitions within the neo-intima in human CAD remain poorly understood, and no lipid-independent therapies are currently approved for its treatment. Here, we performed multi-omic single-cell gene expression profiling, epitope mapping, and spatial transcriptomics from 27 human coronary arteries. Our analysis identified fibroblast activation protein (FAP) as a marker of modulated VSMCs within the neo-intima. Genetic lineage tracing in mice confirmed that FAP⁺ cells in the plaque originate from medial VSMCs. Additionally, non-invasive positron emission tomography (PET) imaging in patients with CAD revealed focal FAP uptake in atherosclerotic lesions. Spatial transcriptomics further delineated the distinct localization of VSMC and immune cell subsets within plaques, with FAP⁺ states enriched in the neo-intima. To explore the therapeutic potential of targeting de-differentiated VSMCs, we developed an anti-FAP bispecific T-cell engager (BiTE) and demonstrated that it significantly reduced the plaque burden in multiple mouse models of atherosclerosis. Collectively, our study provides the first single-cell and spatially resolved map of human CAD, establishes FAP as a marker of modulated smooth muscle cells, and demonstrates the broader potential of immunotherapeutics for lipid independent targets in atherosclerotic CAD.

Article activity feed