Facial gestures are enacted via a cortical hierarchy of dynamic and stable codes
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Successful communication requires the generation and perception of a shared set of signals. Facial gestures are one fundamental set of communicative behaviors in primates, generated through the dynamic arrangement of dozens of fine muscles. While much progress has been made uncovering the neural mechanisms of face perception, little is known about those controlling facial gesture production. Commensurate with the importance of facial gestures in daily social life, anatomical work has shown that facial muscles are under direct control from multiple cortical regions, including primary and premotor in lateral frontal cortex, and cingulate in medial frontal cortex. Furthermore, neuropsychological evidence from focal lesion patients has suggested that lateral cortex controls voluntary movements, and medial emotional expressions. Here we show that lateral and medial cortical face motor regions encode both types of gestures. They do so through unique temporal activity patterns, distinguishable well-prior to movement onset. During gesture production, cortical regions encoded facial kinematics in a context-dependent manner. Our results show how cortical regions projecting in parallel downstream, but each situated at a different level of a posterior-anterior hierarchy form a continuum of gesture coding from dynamic to temporally stable, in order to produce context-related, coherent motor outputs during social communication.