Rational design of next-generation filovirus vaccines through glycoprotein stabilization, nanoparticle display, and glycan modification

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Filoviruses pose a significant threat to human health due to frequent outbreaks and high mortality. Although two vector-based vaccines are available for Ebola virus, a broadly protective filovirus vaccine remains elusive. Here, we evaluate a general strategy for stabilizing glycoprotein (GP) structures from Ebola, Sudan, and Bundibugyo orthoebolaviruses and Ravn orthomarburgvirus. A 3.2 Å crystal structure provides atomic-level details of the redesigned Ebola virus GP, while cryo-electron microscopy reveals how a pan-orthoebolavirus neutralizing antibody targets a conserved site on the stabilized Sudan virus GP (3.13 Å resolution), along with a low-resolution model of antibody-bound Ravn virus GP. A self-assembling protein nanoparticle (SApNP), I3-01v9, is redesigned at the N terminus to enable optimal surface display of filovirus GP trimers. Following detailed in vitro characterization, we examine the lymph node dynamics of Sudan virus GP and GP-presenting SApNPs in mice. Compared with the soluble trimer, SApNPs exhibit ∼112-fold longer retention in lymph node follicles, up to 28-fold greater presentation on follicular dendritic cell dendrites, and up to 3-fold stronger germinal center reactions. Functional antibody responses induced by filovirus GP trimers and SApNPs bearing wild-type and modified glycans are assessed in mice. This study provides a foundation for next-generation filovirus vaccine development.

ONE-SENTENCE SUMMARY

Filovirus glycoproteins and nanoparticles were rationally designed and characterized in vitro and in vivo to aid filovirus vaccine development.

Article activity feed