JUNIPER: Reconstructing Transmission Events from Next-Generation Sequencing Data at Scale

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Transmission reconstruction--the inference of who infects whom in disease outbreaks--offers critical insights into how pathogens spread and provides opportunities for targeted control measures. We developed JUNIPER (Joint Underlying Network Inference for Phylogenetic and Epidemiological Reconstructions), a highly-scalable pathogen outbreak reconstruction tool that incorporates intrahost variation, incomplete sampling, and algorithmic parallelization. Central to JUNIPER is a statistical model for within-host variant frequencies observed by next generation sequencing, which we validated on a dataset of over 160,000 deep-sequenced SARS-CoV-2 genomes. Combining this within-host variation model with population-level evolutionary and transmission models, we developed a method for inferring phylogenies and transmission trees simultaneously. We benchmarked JUNIPER on computer-generated and real outbreaks in which transmission links were known or epidemiologically confirmed. We demonstrated JUNIPER's real-world utility on two large-scale datasets: over 1,500 bovine H5N1 cases and over 13,000 human COVID-19 cases. Based on these analyses, we quantified the elevated H5N1 transmission rates in California and identified high-confidence transmission events, and demonstrated the efficacy of vaccination for reducing SARS-CoV-2 transmission. By overcoming computational and methodological limitations in existing outbreak reconstruction tools, JUNIPER provides a robust framework for studying pathogen spread at scale.

Article activity feed