Immunization with peptide encapsulated within synthetic spores activates T cell responses and reduces tumor growth

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Peptide-based therapeutic immunizations represent safe approaches to elicit antigen-specific T cell responses, but their broad utility remains limited due to poor immunogenicity and short in vivo stability due to rapid degradation and clearance. Here we employed synthetic bacterial spore-like particles, “SSHELs”, made entirely of biocompatible materials, to deliver a model peptide antigen in the absence of additional adjuvants. SSHELs carrying the peptide antigen were internalized by dendritic cells and SSHEL-delivered peptides were then processed and cross-presented in vitro and in vivo more efficiently than free peptides. Further, SSHEL-delivered peptides elicited effective antigen-specific T cell expansion in a manner that was dependent on particle size and peptide presentation mode (encased peptides were superior to surface-attached peptides). In a mouse melanoma model expressing the antigen ovalbumin, therapeutic immunization reduced tumor size and increased survival. We propose that SSHELs are a self-adjuvanting peptide delivery system that mimics a natural presentation to elicit a robust immune response.

Article activity feed