Comparative genomic analysis of key oncogenic pathways in hepatocellular carcinoma among diverse populations

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background/Objectives

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality, with significant racial and ethnic disparities in incidence, tumor biology, and clinical outcomes. Hispanic/Latino (H/L) patients tend to be diagnosed at younger ages and more advanced stages than Non-Hispanic White (NHW) patients, yet the molecular mechanisms underlying these disparities remain poorly understood. Key oncogenic pathways, including RTK/RAS, TGF-Beta, WNT, PI3K, and TP53, play pivotal roles in tumor progression, treatment resistance, and response to targeted therapies. However, ethnicity-specific alterations within these pathways remain largely unexplored. This study aims to compare pathway-specific mutations in HCC between H/L and NHW patients, assess tumor mutation burden, and identify ethnicity-associated oncogenic drivers using publicly available datasets. Findings from this analysis may inform precision medicine strategies for improving early detection and targeted therapies in underrepresented populations.

Methods

We conducted a bioinformatics analysis using publicly available HCC datasets to assess mutation frequencies in RTK/RAS, TGF-Beta, WNT, PI3K, and TP53 pathway genes. The study included 547 patients, consisting of 69 H/L patients and 478 NHW patients. Patients were stratified by ethnicity (H/L vs. NHW) to evaluate differences in mutation prevalence. Chi-squared tests were used to compare mutation frequencies, while Kaplan-Meier survival analysis assessed overall survival differences associated with pathway-specific alterations in both populations.

Results

Significant differences were observed in the RTK/RAS pathway related genes, particularly in FGFR4 mutations, which were more prevalent in H/L patients compared to NHW patients (4.3% vs. 0.6%, p = 0.02). Additionally, IGF1R mutations exhibited borderline significance (7.2% vs. 2.9%, p = 0.07). In the PI3K pathway, INPP4B alterations were more frequent in H/L patients than in NHW patients (4.3% vs. 1%, p = 0.06), while in the TGF-Beta pathway, TGFBR2 mutations were more common in H/L patients (2.9% vs. 0.4%, p = 0.07), suggesting potential ethnicity-specific variations.

Survival analysis revealed no significant differences in overall survival between H/L and NHW patients, indicating that molecular alterations alone may not fully explain survival disparities and suggesting a role for additional factors such as immune response, environmental exposures, or access to targeted therapies.

Conclusions

This study provides one of the first ethnicity-focused analyses of key oncogenic pathway alterations in HCC, revealing distinct molecular differences between H/L and NHW patients. The findings suggest that RTK/RAS (FGFR4, IGF1R), PI3K (INPP4B), and TGF-Beta (TGFBR2) pathway alterations may play a distinct role in HCC among H/L patients, while their prognostic significance in NHW patients remains unclear. These insights emphasize the importance of incorporating ethnicity-specific molecular profiling into precision medicine approaches to improve early detection, targeted therapies, and clinical outcomes in HCC, particularly for underrepresented populations.

Article activity feed