Shapley Fields Reveal Chemotopic Organization in the Mouse Olfactory Bulb Across Diverse Chemical Feature Sets

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Representations of chemical features in the neural activity of the olfactory bulb (OB) are not well-understood, unlike the neural code for stimuli of the other sensory modalities. This is because the space of olfactory stimuli lacks a natural coordinate system, and this significantly complicates characterizing neural receptive fields (tuning curves), analogous to those in the other sensory modalities. The degree to which olfactory tuning is spatially organized across the OB, often referred to as chemotopy , is also not well-understood. To advance our understanding of these aspects of olfactory coding, we introduce an interpretable method of Shapley fields , as an olfactory analog of retinotopic receptive fields. Shapley fields are spatial distributions of chemical feature importance for the tuning of OB glomeruli. We used this tool to investigate chemotopy in the OB with diverse sets of chemical features using widefield epifluorescence recordings of the mouse dorsal OB in response to stimuli across a wide range of the chemical space.

We found that Shapley fields reveal a weak chemotopic organization of the chemical feature sensitivity of dorsal OB glomeruli. This organization was consistent across animals and mostly agreed across very different chemical feature sets: (i) the expert-curated PubChem database features and (ii) features derived from a Graph Neural Network trained on human olfactory perceptual tasks. Moreover, we found that the principal components of the Shapley fields often corresponded to single commonly accepted chemical classification groups, that therefore could be “recovered” from the neural activity in the mouse OB. Our findings suggest that Shapley fields may serve as a chemical feature-agnostic method for investigating olfactory perception.

Article activity feed