Multiple methods for assessing learning and memory in Drosophila melanogaster demonstrates the highly complex, context-dependent genetic underpinnings of cognitive traits

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Learning and memory are fundamental for an individual to be able to respond to changing stimuli in their environment. Between individuals we see variation in their ability to perform learning and memory tasks, however, it is still largely unknown what genetic factors may impact this variability. To gain better insight to the genetic components impacting variation in learning and memory, we use recombinant inbred lines (RILs) from the Drosophila synthetic population resource (DSPR), a multiparent mapping population exhibiting natural variation in many traits. Using a reward based associative learning and memory assay, we trained flies to associate an odor with a sucrose reward under starvation condition and measured olfactory learning and memory ability in y-mazes for 50 DSPR RILs. While we do not find significant QTLs for olfactory learning or memory, we found suggestive regions that may be contributing to variability in performance when trained to different odors. We provide evidence that performance with specific odors should be considered different phenotypes and introduce new methods for analysis for olfactory y-maze assays with multiple decision points. Additionally, we compare our data to previously collected place learning and memory data to show there is limited correlation in performance outcomes.

Article activity feed