Sphingolipid metabolism drives mitochondria remodeling during aging and oxidative stress

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

One of the hallmarks of aging is a decline in the function of mitochondria, which is often accompanied by altered morphology and dynamics. In some cases, these changes may reflect macromolecular damage to mitochondria that occurs with aging and stress, while in other cases they may be part of a programmed, adaptive response. In this study, we report that mitochondria undergo dramatic morphological changes in chronologically aged yeast cells. These changes are characterized by a large, rounded morphology, decreased co-localization of outer membrane and matrix markers, and decreased mitochondrial membrane potential. Notably, these transitions are prevented by pharmacological or genetic interventions that perturb sphingolipid biosynthesis, indicating that sphingolipids are required for these mitochondrial transitions in aging cells. Consistent with these findings, we observe that overexpression of inositol phospholipid phospholipase (Isc1) prevents these alterations to mitochondria morphology in aging cells. We also report that mitochondria exhibit similar sphingolipid-dependent morphological transitions following acute exposure to oxidative stress. These findings suggest that sphingolipid metabolism contributes to mitochondrial remodeling in aging cells and during oxidative stress, perhaps as a result of damaged sphingolipids that localize to mitochondrial membranes. These findings underscore the complex relationship between mitochondria function and sphingolipid metabolism, particularly in the context of aging and stress.

Article activity feed