Combining Sampling Methods with Attractor Dynamics in Spiking Models of Head-Direction Systems
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Uncertainty is a fundamental aspect of the natural environment, requiring the brain to infer and integrate noisy signals to guide behavior effectively. Sampling-based inference has been proposed as a mechanism for dealing with uncertainty, particularly in early sensory processing. However, it is unclear how to reconcile sampling-based methods with operational principles of higher-order brain areas, such as attractor dynamics of persistent neural representations. In this study, we present a spiking neural network model for the head-direction (HD) system that combines sampling-based inference with attractor dynamics. To achieve this, we derive the required spiking neural network dynamics and interactions to perform sampling from a large family of probability distributions—including variables encoded with Poisson noise. We then propose a method that allows the network to update its estimate of the current head direction by integrating angular velocity samples—derived from noisy inputs—with a pull towards a circular manifold, thereby maintaining consistent attractor dynamics. This model makes specific, testable predictions about the HD system that can be examined in future neurophysiological experiments: it predicts correlated subthreshold voltage fluctuations; distinctive short- and long-term firing correlations among neurons; and characteristic statistics of the movement of the neural activity “bump” representing the head direction. Overall, our approach extends previous theories on probabilistic sampling with spiking neurons, offers a novel perspective on the computations responsible for orientation and navigation, and supports the hypothesis that sampling-based methods can be combined with attractor dynamics to provide a viable framework for studying neural dynamics across the brain.