Lysine-specific demethylase 1a is obligatory for gene regulation during kidney development

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Histone methyltransferases and demethylases play crucial roles in gene regulation and are vital for proper functioning of multiple tissues. Lysine-specific histone demethylase 1A (Kdm1a), is responsible for the demethylation of specific lysines, namely K4 and K9, on histone H3. In this study, we investigated the functions of Kdm1a during mouse kidney development upon targeted deletion in renal progenitor cells. Loss of Kdm1 a in Six2-positive nephron progenitors resulted in significant reduction in renal mass, tissue structural changes and impaired function. To further understand the molecular function of Kdm1a during kidney development, we conducted multi-omics analyses that included transcriptome profiling, Chromatin immunoprecipitation (ChIP) sequencing, and methylome assessments. These omic analyses identified Kdm1a as a critical gene regulator required for sustained expression of several nephron segment marker genes, as well as vast number of solute carrier (Slc) genes and a few imprinted genes. Absence of Kdm1a in kidneys led to an increase in global H3K9 methylation peaks, which correlated with the transcriptional downregulation of numerous genes. Among these were markers of nephron progenitors and presumptive tubular precursors. We also observed that specific gene bodies exhibited altered DNA methylation patterns at intragenic differentially methylated regions (DMRs) upon Kdm1a deletion, while the overall global levels of DNA methylation remained unchanged. Our data point to a key regulatory role for Kdm1a in the renal progenitor epigenome, influencing kidney specific gene expression in the developing nephrons. Together the study highlights an indispensable role for Kdm1a for proper development of mouse kidneys, and its absence leading to significant developmental and functional impairment.

Article activity feed