mTOR regulates Wnt signaling to promote tension-mediated lens vesicle closure
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Lens vesicle closure is a pivotal event in ocular morphogenesis, and its disruption underlies Peters anomaly, a leading congenital cause of corneal opacity. Here, we elucidate a mechanistic hierarchy in which mTOR-Wnt signaling orchestrates cytoskeletal tension to drive this process. Conditional ablation of mTOR in the lens ectoderm induces aberrant corneal-lenticular stalk formation and transdifferentiation of the ciliary margin into neural retina. mTOR inhibition suppresses Wnt3 expression, and Wnt3 displayed a similar lens stalk phenotype, positioning mTOR as an upstream regulator of Wnt ligand production. Complete ablation of lens-derived Wnt ligands via deletion of the Wnt transporter Wls exacerbates developmental defects, triggering anterior lens herniation and ciliary margin development failure. Disruption of β-catenin-mediated Wnt signaling or dual deletion of Wnt co-receptors Lrp5/6 in lens ectoderm similarly prevents vesicle closure, recapitulating lens herniation. Strikingly, Rac1 deletion rescues corneal-lenticular stalk phenotypes in mTOR, Wls, and β-catenin mutants, directly linking Wnt effectors to cytoskeletal remodeling. Our findings establish an mTOR-Wnt-Rac1 signaling axis as the core regulator of cytoskeletal tension required for lens vesicle closure.