Clonal interference, genetic variation and the speed of evolution in structured populations

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

When it comes to understanding the role that population structure plays in shaping rates of evolution, it is commonly accepted that interference between evolutionary innovations is more prevalent in structured populations compared to well-mixed, and that population structure reduces the rate of evolution, while simultaneously promoting maintenance of genetic variation. Prior models usually represent population structure using two or more connected demes or lattices with periodic boundary conditions. Fundamentally, the observed spatial evolutionary slow-down is rooted in the fact that these types of structures increase the time it takes for a selective sweep and therefore, increase the probability that multiple beneficial mutations will coexist and interfere. Here we show that systematically introducing more heterogeneity in population structure can reshape these prior conclusions and lead to a much wider range of observed evolutionary outcome, including increased rates of evolution. At a big picture level, our results showcase that the evolutionary effects of population structure crucially depend on the properties of the topology considered. Understanding these spatial properties is therefore requisite for making meaningful evolutionary comparisons across different topologies, for forming sensible null expectations about experimental or observational data or for developing an intuition for when well-mixed approximations, or approximations done using spatial models with a high degree of symmetry, might not apply.

Article activity feed