A gene-based model of fitness and its implications for genetic variation: Genetic and inbreeding loads

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

In the companion paper to this, we examined the consequences for patterns of linkage disequilibrium of the “gene” model of fitness, which postulates that the effects of recessive or partially recessive deleterious mutations located at different sites within a gene fail to complement each other. Here, we examine the consequences of the gene model for the genetic and inbreeding loads, using both analytical and simulation methods, and contrast it with the frequently used “sites” model that allows allelic complementation. We show that the gene model results in a slightly lower genetic load, but a much smaller inbreeding load, than the sites model, implying that standard predictions of mutational contributions to inbreeding depression may be overestimates. Synergistic epistasis between pairs of mutations was also modeled, and shown to considerably reduce the inbreeding load for both the gene and sites models. The theoretical results are discussed in relation to data on inbreeding load in Drosophila melanogaster .

Article activity feed