Cross-cohort analysis of expression and splicing quantitative trait loci in TOPMed
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Most genetic variants associated with complex traits and diseases occur in non-coding genomic regions and are hypothesized to regulate gene expression. To understand the genetics underlying gene expression variability, we characterize 14,324 ancestrally diverse RNA-sequencing samples from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and integrate whole genome sequencing data to perform cis and trans expression and splicing quantitative trait locus ( cis -/trans-e/sQTL) analyses in six tissues and cell types, most notably whole blood (N=6,454) and lung (N=1,291). We show this dataset enables greater detection of secondary cis-e/sQTL signals than was achieved in previous studies, and that secondary cis-eQTL and primary trans-eQTL signal discovery is not saturated even though eGene discovery is. Most TOPMed trans-eQTL signals colocalize with cis-e/sQTL signals, suggesting many trans signals are mediated by cis signals. We fine-map European UK BioBank GWAS signals from 164 traits and colocalize the resulting 34,107 fine-mapped GWAS signals with TOPMed e/sQTL signals, finding that of 10,611 GWAS signals with a colocalization, 7,096 GWAS signals colocalize with at least one secondary e/sQTL signal. These results demonstrate that larger e/sQTL analyses will continue to uncover secondary e/sQTL signals, and that these new signals will benefit GWAS interpretation.