CHIP protects lysosomes from CLN4 mutant-induced membrane damages
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Understanding how cells mitigate lysosomal damage is critical for unraveling pathogenic mechanisms of lysosome-related diseases. Here we use organelle-specific proteomics in iPSC-derived neurons (i 3 Neuron) and an in vitro lysosome-damaging assay to demonstrate that lysosome damage, caused by the aggregation of Ceroid Lipofuscinosis Neuronal 4 (CLN4)-linked DNAJC5 mutants on lysosomal membranes, serves as a critical pathogenic linchpin in CLN4-associated neurodegeneration. Intriguingly, in non-neuronal cells, a ubiquitin-dependent microautophagy mechanism downregulates CLN4 aggregates to counteract CLN4-associated lysotoxicity. Genome-wide CRISPR screens identify the ubiquitin ligase CHIP as a central microautophagy regulator that confers ubiquitin-dependent lysosome protection. Importantly, CHIP’s lysosome protection function is transferrable, as ectopic CHIP improves lysosomal function in CLN4 i 3 Neurons, and effectively alleviates lipofuscin accumulation and neurodegeneration in a Drosophila CLN4 disease model. Our study establishes CHIP-mediated microautophagy as a key organelle damage guardian that preserves lysosome integrity, offering new insights into therapeutic development for CLN4 and other lysosome-related neurodegenerative diseases.