Machine Learning-Based Model for Behavioral Analysis in Rodents: Application to the Forced Swim Test
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The Forced Swim Test (FST) is a widely used preclinical model for assessing antidepressant efficacy, studying stress response, and evaluating depressive-like behaviours in rodents. Over the last 10 years, more than 5,500 scientific articles reporting the use of the FST have been published. Despite its widespread use, the FST behaviours are still manually scored, resulting in a labor-intensive and time-consuming process that is prone to human bias and variability. Despite eliminating some biases, existing automated systems are costly and typically only able to distinguish between immobility and active behaviours. Therefore, they are often unable to accurately differentiate the major subtypes of movement patterns, such as swimming and climbing. To address these limitations, we propose a novel approach based on machine learning (ML) using a three-dimensional residual convolutional neural network (3D RCNN) that processes video pixels directly, capturing the spatiotemporal dynamics of rodent behaviour. Our ML model was validated against manual scoring in rats treated with fluoxetine and desipramine, two antidepressants known to induce distinct behavioural patterns. The ML model successfully differentiated among swimming, climbing, and immobility behaviours, demonstrating its potential as a standardized and unbiased tool for automatized behavioural analysis in the FST. Subsequently, we successfully validated our model by testing its ability to distinguish between drugs that predominantly evoke climbing (i.e., amitriptyline), those that preferentially facilitate swimming (i.e., paroxetine), and those that evoke both in a more balanced manner (i.e., venlafaxine). This approach represents a significant advancement in preclinical research, providing a more accurate and efficient method to analyze forced swimming data in rodents. We anticipate that due to its adaptability, in addition to the FST, the model could be applied to various behavioural tests in laboratory animals.