Long-Term Functional Rescue of Trauma-Induced Vision Loss by a Novel, Small Molecule TrkB Activator

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Brain-derived neurotrophic factor (BDNF) signaling through the tropomyosin-related kinase B (TrkB) receptor promotes neuronal growth and survival following an injury. However, its short half-life and pleiotropic effects limit the clinical use of BDNF as a therapy in neurodegenerative disorders. Identification of novel and selective TrkB activators may ameliorate the damage caused to retinal neurons during eye-related injuries, and may reduce adverse visual outcomes associated with visual trauma. We previously described a selective TrkB agonist, N-[2-(5-hydroxy-1H-indol-3-yl) ethyl]-2-oxopiperidine-3-carboxamide (HIOC), that reduces the decline in visual function in a mouse model of ocular trauma (1). Using the lead optimization approach, we subsequently synthesized a fluoropyridine analog of HIOC, 2-fluoro-N-(2-(5-hydroxy-1H-indol-3-yl) ethyl) nicotinamide (HIFN), which also successfully activates TrkB. HIFN is a more potent TrkB activator than the parent compound, HIOC. Further, treatment with HIFN demonstrated neuroprotection in an animal model of overpressure ocular blast injury, ameliorating blast-related visual functional decline. Mice treated with HIFN had better visual acuity, contrast sensitivity, and retinal function supported by enhanced survival of retinal ganglion cells compared to vehicle-treated animals. Moreover, HIFN exhibited better protective effects than HIOC. The therapeutic effects of HIFN were attributed to TrkB activation, as blocking the receptor with a selective receptor antagonist (ANA-12) abrogated the neuroprotection. Together, our results identify HIFN, a novel TrkB receptor activator, as a strategy for decreasing retinal degeneration and progressive vision loss associated with traumatic ocular injury. In addition, this compound may have broader applications treating other diseases with altered TrkB activity.

Article activity feed