TISSLET Tissues-based Learning Estimation for Transcriptomics

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

In the context of multi-omics data analytics for various diseases, transcriptome-wide association studies leveraging genetically predicted gene expression hold promise for identifying novel regions linked to complex traits. However, existing methods for multi-tissue gene expression prediction often fail to account for tissue-tissue expression interactions, limiting their accuracy and effectiveness.

This research addresses the challenge of predicting gene expression across multiple tissues by incorporating tissue-tissue expression correlations based on a nonlinear multivariate model. Our findings demonstrate that this model excels in estimating tissue-tissue interactions and accurately predicting missing data. These results have significant implications for multi-omics data analytics and transcriptome-wide association studies, suggesting a novel approach for identifying regions associated with complex traits.

Article activity feed