AlphaFold as a Prior: Experimental Structure Determination Conditioned on a Pretrained Neural Network

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Advances in machine learning have transformed structural biology, enabling swift and accurate prediction of protein structure from sequence. However, challenges persist in capturing sidechain packing, condition-dependent conformational dynamics, and biomolecular interactions, primarily due to scarcity of high-quality training data. Emerging techniques, including cryo-electron tomography (cryo-ET) and high-throughput crystallography, promise vast new sources of structural data, but translating raw experimental observations into mechanistically interpretable atomic models remains a key bottleneck. Here, we aim to address these challenges by improving the efficiency of structural analysis through combining experimental measurements with a landmark protein structure prediction method – AlphaFold2. We present an augmentation of AlphaFold2, ROCKET, that refines its predictions using cryo-EM, cryo-ET, and X-ray crystallography data, and demonstrate that this approach captures biologically important structural variation that AlphaFold2 does not. By performing structure optimization in the space of coevolutionary embeddings, rather than Cartesian coordinates, ROCKET automates difficult modeling tasks, such as flips of functional loops and domain rearrangements, that are beyond the scope of current state-of-the-art methods and, in some instances, even manual human modeling. The ability to efficiently sample these barrier-crossing rearrangements unlocks a new horizon for scalable and automated model building. Crucially, ROCKET does not require retraining of AlphaFold2 and is readily adaptable to multimers, ligand-cofolding, and other data modalities. Conversely, our differentiable crystallographic and cryo-EM target functions are capable of augmenting other structure prediction methods. ROCKET thus provides an extensible framework for the integration of experimental observables with biomolecular machine learning.

Article activity feed