The forkhead transcription factor FKH-7/FOXP acts in chemosensory neurons to regulate developmental decision-making

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Autism is a complex neurodevelopmental disorder with many associated genetic factors, including the forkhead transcription factor FOXP1. Although FOXP1’s neuronal role is well-studied, the specific molecular consequences of different FOXP1 pathogenic variants in physiologically-relevant contexts are unknown. Here we ascribe the first function to Caenorhabditis elegans FKH-7/FOXP, which acts in two chemosensory neuron classes to promote the larval decision to enter the alternative, developmentally-arrested dauer life stage. We demonstrate that human FOXP1 can functionally substitute for C. elegans FKH-7 in these neurons and that engineering analogous FOXP1 hypomorphic missense mutations in the endogenous fkh-7 locus also impairs developmental decision-making. In a fkh-7/FOXP1 missense variant, single-cell transcriptomics identifies downregulated expression of autism-associated kcnl-2/KCNN2 calcium-activated potassium channel in a serotonergic sensory neuron. Our findings establish a novel framework linking two evolutionarily-conserved autism-associated genes for deeper characterization of variant-specific molecular pathology at single neuron resolution in the context of a developmental decision-making paradigm.

Article activity feed