Evolution of BA.2.86 to JN.1 reveals functional changes in non-structural viral proteins are required for fitness of SARS-CoV-2
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19), is still circulating among humans, leading to the continuous evolution. SARS-CoV-2 Omicron JN.1 evolved from a distinct SARS-CoV-2 lineage, BA.2.86, spread rapidly worldwide. It is unclear why BA.2.86 did not become dominant and was quickly replaced by JN.1, which possesses one amino acid substitution in the spike protein (S:L455S) and two in the non-spike proteins NSP6 and ORF7b (NSP6:R252K and ORF7b:F19L) compared to BA.2.86. Here, we utilized recombinant viruses to elucidate the impact of these mutations on the virological characteristics of JN.1. We found that the mutation in the spike attenuated viral replication, but the non-spike mutations enhanced replication, suggesting the mutations in the non-spike proteins compensate for the one in the spike to improve viral fitness, as the mutations in the spike contribute to further immune evasion. Our findings suggest that functional changes in both the spike and non-spike proteins are necessary in the evolution of SARS-CoV-2 to enable evasion of adaptive immunity within the human population while sustaining replication.
IMPORTANCE
Because the spike protein is strongly associated with certain virological properties of SARS-CoV-2, such as immune evasion and infectivity, most previous studies on SARS-CoV-2 variants have focused on spike protein mutations. However, the non-spike proteins also contribute to infectivity, as observed throughout the evolution of Omicron subvariants. In this study, we demonstrate a “trade-off” strategy in SARS-CoV-2 Omicron JN.1 in which the reduced infectivity caused by spike mutation is compensated by non-spike mutations. Our results provide insight into the evolutionary scenario of the emerging virus in the human population.