Selective manipulation of excitatory and inhibitory neurons in top-down and bottom-up visual pathways using ultrasound stimulation

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Introduction

Techniques for precise manipulation of neurons in specific neural pathways are crucial for excitatory/inhibitory (E/I) balance and investigation of complex brain circuits. Low-intensity focused ultrasound stimulation (LIFUS) has emerged as a promising tool for noninvasive deep-brain targeting at high spatial resolution. However, there is a lack of studies that extensively investigate the modulation of top-down and bottom-up corticothalamic circuits via selective manipulation of excitatory and inhibitory neurons. Here, a comprehensive methodology using electrophysiological recording and c-Fos staining is employed to demonstrate pulse repetition frequency (PRF)-dependent E/I selectivity of ultrasound stimulation in the top-down and bottom-up corticothalamic pathways of the visual circuit in rodents.

Materials and methods

Ultrasound stimulation at various PRFs is applied to either the lateral posterior nucleus of the thalamus (LP) or the primary visual cortex (V1), and multi-channel single-unit activity is recorded from the V1 using a silicon probe.

Results and conclusion

Our results demonstrate that high frequency PRFs, particularly at 3 kHz and 1 kHz, are effective at activating the bidirectional corticothalamic visual pathway. In addition, brain region-specific PRFs modulate E/I cortical signals, corticothalamic projections, and synaptic neurotransmission, which is imperative for circuit-specific applications and behavioral studies.

Article activity feed