Dysregulated expression of inflammasome and extracellular matrix genes in C9orf72-ALS/FTD microglia

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Hexanucleotide repeat expansion (HRE) in the non-coding region of the gene C9orf72 is the most prevalent mutation in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The C9orf72 HRE contributes to neuron degeneration in ALS/FTD through both cell-autonomous mechanisms and non-cell autonomous disease processes involving glial cells such as microglia. The molecular mechanisms underlying the contribution of C9orf72-HRE microglia to neuron death in ALS/FTD remain to be fully elucidated. In this study, we generated microglia from human C9orf72-HRE and isogenic iPSCs using three different microglia derivation methods. RNA sequencing analysis reveals a cell-autonomous dysregulation of extracellular matrix (ECM) genes and genes involved in pathways underlying inflammasome activation in C9orf72-HRE microglia. In agreement with elevated expression of inflammasome components, conditioned media from C9orf72-HRE microglia enhance the death of C9orf72-HRE motor neurons implicating microglia-secreted molecules in non-cell autonomous mechanisms of C9orf72 HRE pathology. These findings suggest that aberrant activation of inflammasome-mediated mechanisms in C9orf72-HRE microglia results in a pro-inflammatory phenotype that contributes to non-cell autonomous mechanisms of motor neuron degeneration in ALS/FTD.

Article activity feed