Mesenchymal Stem Cell-Derived Extracellular Vesicles Mitigate Immune Cell Activation in an In Vitro Model of Post-Resuscitation Inflammation

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background

Systemic inflammation is a well-established component of post-cardiac arrest syndrome (PCAS), a condition responsible for significant morbidity and mortality in patients who are initially resuscitated from sudden cardiac arrest. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as promising immunomodulatory agents in various inflammatory conditions, including after ischemia-reperfusion injury (IRI). Here, we investigated the therapeutic potential of MSC-EVs in porcine peripheral blood mononuclear cells (PBMCs) stimulated with lipopolysaccharide (LPS) or mitochondrial DNA (mtDNA) to mimic immune cell activation in PCAS.

Methods

PBMCs were isolated from healthy pigs ( Sus scrofa ), cultured in vitro , stimulated with LPS or mtDNA, and treated with a range of MSC-EV concentrations. Flow cytometry, quantitative PCR, ELISA, and ROS/RNS measurements were performed to assess PBMC activation.

Results

MSC-EV treatment reduced LPS-induced inflammatory granulocyte activation and selectively modulated cytokine transcripts, including IFNα, IL-1β, and TNF-α, in a concentration-dependent manner. Similar immunosuppressive effects were observed in mtDNA-stimulated PBMCs, where MSC-EVs attenuated dendritic cell activation and inflammatory cytokine release. Furthermore, higher concentrations of MSC-EVs significantly decreased ROS/RNS production in both LPS- and mtDNA-challenged PBMCs.

Conclusions

MSC-EVs exhibit potent immunomodulatory properties against LPS- and mtDNA-induced activation of porcine PBMCs, highlighting their broad capacity to modulate immune responses and mitigate oxidative stress induced by pro-inflammatory stimuli that are relevant to PCAS. These findings provide further support for the administration of MSCs, or MSC-EVs themselves, as a potential therapeutic intervention to target immune activation in PCAS and other disorders characterized by an acute systemic inflammatory state.

Article activity feed