Reversible lipid mediated pH-gating of connexin-46/50 by cryo-EM
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Gap junctions, formed by connexin proteins, establish direct electrical and metabolic coupling between cells, enabling coordinated tissue responses. These channels universally respond to intracellular pH changes, closing under acidic conditions to limit the spread of cytotoxic signals during cellular stress, such as ischemia. Using cryo-electron microscopy (cryo-EM), we uncover insights into the structural mechanism of pH-gating in native lens connexin-46/50 (Cx46/50) gap junctions. Mild acidification drives lipid infiltration into the channel pore, displacing the N-terminal (NT) domain and stabilizing pore closure. Lipid involvement is both essential and fully reversible, with structural transitions involving an ensemble of gated-states formed through non-cooperative NT domain movement as well as minor populations of a distinct destabilized open-state. These findings provide molecular insights into pH-gating dynamics, illustrating how structural changes may regulate gap junction function under cellular stress and linking Cx46/50 dysregulation to age-related cataract formation.