Identification of a multi-omics factor predictive of long COVID in the IMPACC study
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Following SARS-CoV-2 infection, ∼10-35% of COVID-19 patients experience long COVID (LC), in which often debilitating symptoms persist for at least three months. Elucidating the biologic underpinnings of LC could identify therapeutic opportunities. We utilized machine learning methods on biologic analytes and patient reported outcome surveys provided over 12 months after hospital discharge from >500 hospitalized COVID-19 patients in the IMPACC cohort to identify a multi-omics “recovery factor”. IMPACC participants who experienced LC had lower recovery factor scores compared to participants without LC. Biologic characterization revealed increased levels of plasma proteins associated with inflammation, elevated transcriptional signatures of heme metabolism, and decreased androgenic steroids in LC patients. The recovery factor was also associated with altered circulating immune cell frequencies. Notably, recovery factor scores were predictive of LC occurrence in patients as early as hospital admission, irrespective of acute disease severity. Thus, the recovery factor identifies patients at risk of LC early after SARS-CoV-2 infection and reveals LC biomarkers and potential treatment targets.