Clonal Heterogeneity in Human Pancreatic Ductal Adenocarcinoma and Its Impact on Tumor Progression

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer characterized by profound desmoplasia and cellular heterogeneity, which cannot be fully resolved using traditional bulk sequencing approaches. To understand the contribution of this heterogeneity to PDAC biology, we analyzed a large cohort of primary human PDAC samples (n = 62), profiling 443,451 single cells and 53,236 spatial transcriptomic spots using a combined single-cell RNA sequencing and spatial transcriptomics approach. Our analysis revealed significant intratumoral heterogeneity, with multiple genetically distinct neoplastic clones co-existing within individual tumors. These clones exhibited diverse transcriptional states and subtype profiles, challenging the traditional binary classification of PDAC into basal and classical subtypes; instead, our findings support a transcriptional continuum influenced by clonal evolution and spatial organization. Additionally, these clones each interacted uniquely with surrounding cell types in the tumor microenvironment. Phylogenetic analysis uncovered a rare but consistent classical-to-basal clonal transition associated with MYC amplification and immune response depletion, which were validated experimentally, suggesting a mechanism driving the emergence of a more aggressive basal clonal phenotype. Spatial analyses further revealed dispersed clones enriched for epithelial-to-mesenchymal transition (EMT) activity and immune suppression, correlating with metastatic potential and colonization of lymph node niches. These dispersed clones tended to transition toward a basal phenotype, contributing to disease progression. Our findings highlight the critical role of clonal diversity, transcriptional plasticity, and TME interactions in shaping human PDAC biology. This work provides new insights into the molecular and spatial heterogeneity of PDAC and offers potential avenues for therapeutic intervention targeting clonal evolution and the mechanisms driving metastasis.

Article activity feed