Single Cell Resolution Tracking of Cutaneous T-Cell Lymphoma Reveals Clonal Evolution in Disease Progression
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Cutaneous T-cell lymphoma (CTCL) remains a challenging disease due to its significant heterogeneity, therapy resistance, and relentless progression. Multi-omics technologies offer the potential to provide uniquely precise views of disease progression and response to therapy. We present here a comprehensive multi-omics view of CTCL clonal evolution, incorporating exome, whole genome, epigenome, bulk-, single cell (sc) VDJ-, and scRNA-sequencing of 114 clinically annotated serial skin, peripheral blood, and lymph node samples from 35 CTCL patients. We leveraged this extensive dataset to define the molecular underpinnings of CTCL progression in individual patients at single cell resolution with the goal of identifying clinically useful biomarkers and therapeutic targets. Our studies identified a large number of recurrent progression-associated clonal genomic alterations; we highlight mutation of CCR4, PI3K signaling, and PD-1 checkpoint pathways as evasion tactics deployed by malignant T cells. We also identified a gain of function mutation in STAT3 (D661Y) and demonstrated by CUT&RUN-seq that it enhances binding to transcription start sites of genes in Rho GTPase pathways, which we previously reported to have activated chromatin and increased expression in HDACi-resistant CTCL. These data provide further support for a previously unrecognized role for Rho GTPase pathway dysregulation in CTCL progression. A striking number of progression-associated mutations occurred in chromatin methylation modifiers, including EZH2, suggesting that EZH1/2 inhibition may also benefit patients with CTCL. Knowledge of these molecular changes should be leveraged for improved disease monitoring, biomarker-informed clinical trial design, and new therapeutic strategies in this challenging and incurable cancer.