Processing of Clostridium perfringens Enterotoxin by Intestinal Proteases

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

C. perfringens type F isolates are a leading cause of food poisoning and antibiotic-associated diarrhea. Type F isolate virulence requires production of C. perfringens enterotoxin [CPE], which acts by forming large pore complexes in host cell plasma membranes. During disease, CPE is produced in the intestines when type F strains undergo sporulation. The toxin is then released into the intestinal lumen when the mother cell lyses at the completion of sporulation. Once present in the lumen, CPE encounters intestinal proteases. This study examined in vitro , ex vivo and in vivo processing of CPE by intestinal proteases and the effects of this processing on CPE activity. Results using purified trypsin or mouse intestinal contents detected rapid cleavage of CPE to a major band of ∼32 kDa and studies with Caco-2 cells showed this processed CPE still forms large complexes and retains cytotoxic activity. When mouse small intestinal loops were challenged with CPE, the toxin caused intestinal histologic damage despite rapid proteolytic processing of most CPE to 32 kDa within 15 min. Intestinal large CPE complexes became more stable with longer treatment times. These results indicate that CPE processing involving trypsin occurs in the intestines and the processed toxin retains enterotoxicity.

Article activity feed