Cohesin drives chromatin scanning during the RAD51-mediated homology search.

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Cohesin folds genomes into chromatin loops, whose roles are under debate. We report that double strand breaks (DSB) induce de novo formation of chromatin loops, with the break positioned at the loop base. These loops form only in S/G2 phases and occur during repair via homologous recombination (HR), concomitant with DNA end resection and RAD51 assembly. RAD51 showed two-tiered accumulation around DSBs, with a broad (~Mb) domain arising from the homology search. This domain is regulated by cohesin unloader, is constrained by TAD boundaries, and it overlaps with chromatin regions reeled through the break-anchored loop, suggesting that loop extrusion regulates the homology search. Indeed, depletion of NIPBL results in reduced HR, and this effect is more pronounced when the HR donor is far (~100 kb) from the break. Our data indicates that loop-extruding cohesin promotes the mammalian homology search by facilitating break-chromatin interactions within the damaged TAD.

Article activity feed