Role of the NuRD complex and altered proteostasis in cancer cell quiescence
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Cytotoxic chemotherapy remains the primary treatment for ovarian cancer (OvCa). Development of chemoresistance typically results in patient death within two years. As such, understanding chemoresistance is critical. One underexplored mechanism of chemotherapy resistance is quiescence. Quiescent cells, which have reversibly exited the cell cycle, are refractory to most chemotherapies which primarily target rapidly proliferating cells. Here, we report that CHD4 and MBD3, components of the nucleosome remodeling and deacetylase (NuRD) complex, are downregulated in quiescent OvCa cells (qOvCa). Indicating a direct role for NuRD complex downregulation in the induction of quiescence, either CHD4 or MBD3 knockdown or histone deacetylase inhibitors (HDACi), such as vorinostat, induce quiescence in OvCa cells. RNA-Seq analysis of HDACi-treated cells confirmed expression changes consistent with induction of quiescence. We also find that both primary qOvCa and vorinostat-induced qOvCa demonstrate altered proteostasis, including increased proteasome activity and autophagy, and combination therapy of HDACi and proteasome inhibitors or autophagy inhibitors demonstrated profound synergistic death of OvCa cells. Finally, we overlapped RNA-Seq signatures from quiescent ovarian cancer cells with genes essential for quiescence in yeast to identify a "quiescent cell core signature." This core quiescent cell signature appeared to be conserved across multiple cancer types, suggesting new therapeutic targets.