Altered Functional Network Energy Across Multiscale Brain Networks in Preterm vs. Full-Term Subjects: Insights from the Adolescent Brain Cognitive Development (ABCD) Study

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Infants born prematurely, or preterm, can experience altered brain connectivity, due in part to incomplete brain development at the time of parturition. Research has also shown structural and functional differences in the brain that persist in these individuals as they enter adolescence when compared to peers who were fully mature at birth. In this study, we examined functional network energy across multiscale functional connectivity in approximately 4600 adolescents from the Adolescent Brain Cognitive Development (ABCD) study who were either preterm or full term at birth. We identified three key brain networks that show significant differences in network energy between preterm and full-term subjects. These networks include the visual network (comprising the occipitotemporal and occipital subnetworks), the sensorimotor network, and the high cognitive network (including the temporoparietal and frontal subnetworks). Additionally, it was demonstrated that full-term subjects exhibit greater instability, leading to more dynamic reconfiguration of functional brain information and increased flexibility across the three identified canonical brain networks compared to preterm subjects. In contrast, those born prematurely show more stable networks but less dynamic and flexible organization of functional brain information within these key canonical networks. In summary, measuring multiscale functional network energy offered insights into the stability of canonical brain networks associated with subjects born prematurely. These findings enhance our understanding of how early birth impacts brain development.

Article activity feed