Real-time capture of σ N transcription initiation intermediates reveals mechanism of ATPase-driven activation by limited unfolding

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Bacterial σ factors bind RNA polymerase (E) to form holoenzyme (Eσ), conferring promoter specificity to E and playing a key role in transcription bubble formation. σ N is unique among σ factors in its structure and functional mechanism, requiring activation by specialized AAA+ ATPases. Eσ N forms an inactive promoter complex where the N-terminal σ N region I (σ N -RI) threads through a small DNA bubble. On the opposite side of the DNA, the ATPase engages σ N -RI within the pore of its hexameric ring. Here, we perform kinetics-guided structural analysis of de novo formed Eσ N initiation complexes and engineer a biochemical assay to measure ATPase-mediated σ N -RI translocation during promoter melting. We show that the ATPase exerts mechanical action to translocate about 30 residues of σ N -RI through the DNA bubble, disrupting inhibitory structures of σ N to allow full transcription bubble formation. A local charge switch of σ N -RI from positive to negative may help facilitate disengagement of the otherwise processive ATPase, allowing subsequent σ N disentanglement from the DNA bubble.

Article activity feed