Top-DTI: Integrating Topological Deep Learning and Large Language Models for Drug Target Interaction Prediction

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The accurate prediction of drug–target interactions (DTI) is a crucial step in drug discovery, providing a foundation for identifying novel therapeutics. Traditional drug development is both costly and time-consuming, often spanning over a decade. Computational approaches help narrow the pool of compound candidates, offering significant starting points for experimental validation. In this study, we propose Top-DTI framework for predicting DTI by integrating topological data analysis (TDA) with large language models (LLMs). Top-DTI leverages persistent homology to extract topological features from protein contact maps and drug molecular images. Simultaneously, protein and drug LLMs generate semantically rich embeddings that capture sequential and contextual information from protein sequences and drug SMILES strings. By combining these complementary features, Top-DTI enhances predictive performance and robustness.

Results

Experimental results on the public BioSNAP and Human DTI benchmark datasets demonstrate that the proposed Top-DTI model outperforms state-of-the-art approaches across multiple evaluation metrics, including AUROC, AUPRC, sensitivity, and specificity. Furthermore, the Top-DTI model achieves superior performance in the challenging cold-split scenario, where the test and validation sets contain drugs or targets absent from the training set. This setting simulates real-world scenarios and highlights the robustness of the model. Notably, incorporating topological features alongside LLM embeddings significantly improves predictive performance, underscoring the value of integrating structural and sequence-based representations.

Availability

The data and source code of Top-DTI is available at https://github.com/bozdaglab/Top_DTI under Creative Commons Attribution Non Commercial 4.0 International Public License.

Article activity feed