The fluid genomic organisation of jingmenviruses
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Jingmenviruses are a distinct group of flavi-like viruses characterized by a genome consisting of four to five segments. Here, we report the discovery of three novel putative jingmenviruses, identified by mining publicly available metagenomics data from mosquito and arachnid samples. Strikingly, these novel jingmenvirus sequences contain up to six genomic segments, with pairs of homologous segments coding for putative structural proteins. Following this discovery, we found an additional homologous segment for two other jingmenvirus genomes, which had gone unnoticed in the initial publications. The presence of a single version of the segments coding for non-structural proteins suggests we have indeed identified jingmenviruses with infectious units that contain up to six segments. We compared these novel jingmenvirus sequences to published sequences, in particular the segments with multiple open reading frames, and we propose that the putative translation initiation mechanisms involved for these segments are ribosomal frameshift resulting in the fusion of open reading frames and leaky scanning for overlapping ORFs. These putative mechanisms, conserved for all jingmenvirus sequences analysed, including in homologous segments, require biological confirmation. We also generated structural models of two putative structural proteins in the duplicated segments, and the corresponding alignments enabled us to confirm or identify the homologous relationship between sequences that shared limited nucleotide or amino acid identity. Altogether, these results highlight the fluid nature of jingmenviruses, which is a hallmark of multipartite viruses. Different combinations of segments packaged in different virus particles could facilitate the acquisition or loss of genomic segments and a segment duplication following genomic drift. Our data therefore contribute to the evidence of the multipartite nature of jingmenviruses and the evolutionary role this organisation may play.