Joint single-cell profiling of CRISPR-Cas9 edits and transcriptomes reveals widespread off-target events and their effects on gene expression

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

A longstanding barrier in genome engineering with CRISPR-Cas9 has been the inability to measure Cas9 edit outcomes and their functional effects at single-cell resolution. Here we present Superb-seq, a new technology that leverages T7 in situ transcription and single-cell RNA sequencing to jointly measure on- and off-target Cas9 edits and their effects on gene expression. We performed Superb-seq on 10,000 K562 cells, targeting four chromatin remodeler genes with seven guide RNAs. Superb-seq identified 11,891 edit events in 6,230 edited cells at all seven on-target sites and at an additional 36 off-target sites. Although the seven guides were selected for high specificity, six of them caused off-target edits, ranging in frequency from 0.03% to 18.6% of cells. A notable off-target edit within the first intron of USP9X disrupted the expression of this gene and over 150 downstream genes. In summary, Cas9 off-targeting is pervasive due to a combination of rare and common edit events, occurs primarily within introns of off-target genes, and can exert widespread effects on gene expression. Superb-seq uses off-the-shelf kits, standard equipment, and requires no virus, which will enable genome-wide CRISPR screens in diverse cell types as well as functional characterization of clinically-relevant guides.

Article activity feed