Trymethylamine-N-oxide, a gut-derived metabolite, induces myofibroblastic activation of valvular interstitial cells through endoplasmic reticulum stress

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Calcific aortic valve disease currently lacks effective treatments beyond surgical valve replacement, due to an incomplete understanding of its pathogenesis. Emerging evidence suggests that the gut microbiome influences cardiovascular health through the production of metabolites derived from dietary components. Among them, trimethylamine-N-oxide (TMAO) has been identified as a potential causal factor for several cardiovascular conditions. However, its role in the development of aortic valve disease remains poorly understood. This study sought to investigate the impact of TMAO on valvular interstitial cells (VICs), the most abundant cell type in the aortic valve. Here, we demonstrate that TMAO activates VICs towards a myofibroblastic profibrotic phenotype. Using an in vitro protocol to generate quiescent VICs, we found that TMAO induces the upregulation of myofibroblastic markers in a sex-independent manner. These quiescent VICs were more sensitive to TMAO than conventionally cultured VICs. Treatment with TMAO also elevated extracellular matrix production and oxidative stress, phenotypic hallmarks of an activated profibrotic state. Finally, inhibition of the endoplasmic reticulum stress kinase prior to TMAO treatment blocked all effects of this metabolite. These findings suggest that TMAO contributes to the early stages of valve disease by promoting VIC activation through endoplasmic reticulum stress mechanisms. Understanding the role of TMAO and other gut-derived metabolites in the pathogenesis of valve disease could inform the development of novel preventive or therapeutic strategies to modify or delay disease progression. Furthermore, these insights underscore the importance of host-microbiome interactions and highlight the potential for targeted dietary interventions to mitigate cardiovascular disease risk.

Article activity feed