Φ-Space ST: a platform-agnostic method to identify cell states in spatial transcriptomics studies
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
We introduce Φ-Space ST, a platform-agnostic method to identify continuous cell states in spatial transcriptomics (ST) data using multiple scRNA-seq references. For ST with supercellular resolution, Φ-Space ST achieves interpretable cell type deconvolution with significantly faster computation. For subcellular resolution, Φ-Space ST annotates cell states without cell segmentation, leading to highly insightful spatial niche identification. Φ-Space ST harmonises annotations derived from multiple scRNA-seq references, and provides interpretable characterisations of disease cell states by leveraging healthy references. We validate Φ-Space ST in three case studies involving CosMx, Visium and Stereo-seq platforms for various cancer tissues. Our method revealed niche-specific enriched cell types and distinct cell type co-presence patterns that distinguish tumour from non-tumour tissue regions. These findings highlight the potential of Φ-Space ST as a robust and scalable tool for ST data analysis for understanding complex tissues and pathologies.