EpiFoundation: A Foundation Model for Single-Cell ATAC-seq via Peak-to-Gene Alignment
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Foundation models exhibit strong capabilities for downstream tasks by learning generalized representations through self-supervised pre-training on large datasets. While several foundation models have been developed for single-cell RNA-seq (scRNA-seq) data, there is still a lack of models specifically tailored for single-cell ATAC-seq (scATAC-seq), which measures epigenetic information in individual cells. The principal challenge in developing such a model lies in the vast number of scATAC peaks and the significant sparsity of the data, which complicates the formulation of peak-to-peak correlations. To address this challenge, we introduce EpiFoundation , a foundation model for learning cell representations from the high-dimensional and sparse space of peaks. Epi-Foundation relies on an innovative cross-modality pre-training procedure with two key technical innovations. First, EpiFoundation exclusively processes the non-zero peak set, thereby enhancing the density of cell-specific information within the input data. Second, EpiFoundation utilizes dense gene expression information to supervise the pre-training process, aligning peak-to-gene correlations. EpiFoundation can handle various types of downstream tasks, including cell-type annotation, batch correction, and gene expression prediction. To train and validate EpiFoundation, we curated MiniAtlas , a dataset of 100,000+ single cells with paired scRNA-seq and scATAC-seq data, along with diverse test sets spanning various tissues and cell types for robust evaluation. EpiFoundation demonstrates state-of-the-art performance across multiple tissues and diverse downstream tasks.