Arabidopsis root-type ferredoxin:NADP(H) oxidoreductases are crucial for root growth and ferredoxin-dependent processes
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Root-type ferredoxin:NADP(H) oxidoreductase (RFNR) is believed to reduce ferredoxin using NADPH in nonphotosynthetic tissues, facilitating ferredoxin-dependent biological processes. However, the physiological functions of RFNR remain unclear due to the difficulty in obtaining mutants lacking redundant RFNR isoproteins. The present study successfully generated Arabidopsis homozygous rnfr1 ; 2 double mutants by traditional crossing and selection. However, they displayed severely stunted roots, challenging subsequent growth and abundant seed recovery. Notably, grafted plants combining mutant scions with wild-type rootstocks exhibited normal growth and produced abundant mutant seeds. Growth analysis employing reciprocal grafts with the wild-type and mutant plants showed that primary root growth was inhibited only when the rootstock was derived from the mutants. Meanwhile, the absence of RFNR1 and 2 in the scion had no apparent impact on shoot and root growth. Root transcriptome analysis revealed that RFNR1 and 2 deficiency upregulated genes encoding ferredoxin-dependent enzymes and root-type ferredoxin, leading to genome-wide reprogramming associated with cell walls, lipids, photosynthesis, secondary metabolism, and biotic/abiotic stress responses. Thus, Arabidopsis RFNR1 and 2 are crucial for root growth and various ferredoxin-dependent biological processes.