Fmr1 KO causes delayed rebound spike timing in mediodorsal thalamocortical neurons through regulation of HCN channel activity
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background: The neurodevelopmental disorder Fragile X syndrome (FXS) results from hypermethylation of the FMR1 gene which prevents FMRP production. FMRP modulates the expression and function of a wide variety of proteins, including voltage-gated ion channels such as Hyperpolarization-Activated Cyclic Nucleotide gated (HCN) channels, which are integral to rhythmic activity in thalamic structures. Thalamocortical pathology, particularly involving the mediodorsal thalamus (MD), has been implicated in neurodevelopmental disorders. MD connectivity with mPFC is integral to executive functions like working memory and social behaviors that are disrupted in FXS. Methods: We used a combination of retrograde labeling and ex vivo brain slice whole cell electrophysiology in 40 wild type and 42 Fmr1 KO male mice to investigate how a lack of Fmr1 affects intrinsic cellular properties in lateral (MD-L) and medial (MD-M) MD neurons that project to the medial prefrontal cortex (MD→mPFC neurons). Results: In MD-L neurons, Fmr1 knockout caused a decrease in HCN-mediated membrane properties such as voltage sag and membrane afterhyperpolarization. These changes in subthreshold properties were accompanied by changes in suprathreshold neuron properties such as the variability of action potential burst timing. Conclusions: In Fmr1 knockout mice, reduced HCN channel activity in MD→mPFC neurons impairs both the timing and magnitude of HCN-mediated membrane potential regulation. Changes in response timing may adversely affect rhythm propagation in Fmr1 KO thalamocortical circuitry. MD thalamic neurons are critical for maintaining rhythmic activity involved in cognitive and affective functions. Understanding specific mechanisms of thalamocortical circuit activity may lead to therapeutic interventions for individuals with FXS.