Widespread mono- and oligoadenylation direct small noncoding RNA maturation versus degradation fates
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Small non-coding RNAs (sncRNAs) are subject to 3’ end trimming and tailing activities that impact maturation versus degradation decisions during biogenesis. To investigate the dynamics of human sncRNA 3’ end processing at a global level we performed genome-wide 3’ end sequencing of nascently-transcribed and steady-state sncRNAs. This revealed widespread post-transcriptional adenylation of nascent sncRNAs, which came in two distinct varieties. One is characterized by oligoadenylation, which is transient, promoted by TENT4A/4B polymerases, and most commonly observed on unstable snoRNAs that are not fully processed at their 3’ ends. The other is characterized by monoadenylation, which is broadly catalyzed by TENT2 and, in contrast to oligoadenylation, stably accumulates at the 3’-end of sncRNAs, including Polymerase-III-transcribed (Pol-III) RNAs and a subset of small nuclear RNAs. Monoadenylation inhibits Pol-III RNA post-transcriptional 3’ uridine trimming and extension and, in the case of 7SL RNAs, prevents their accumulation with nuclear La protein and promotes their biogenesis towards assembly into cytoplasmic signal recognition particles. Thus, the biogenesis of human sncRNAs involves widespread mono- or oligo-adenylation with divergent impacts on sncRNA fates.