The core MICOS complex subunit Mic60 has been substituted by two cryptic mitofilin-containing proteins in Euglenozoa
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Cristae enclose respiratory chain complexes, making them the bioenergetic subcompartments of mitochondria. The MICOS complex is among the inducers of membrane curvature needed for crista formation. Resembling the respiratory chain complexes, MICOS is organized around a core protein, the mitofilin-domain bearing Mic60, that was inherited from the alphaproteobacterial progenitor of mitochondria. Extant alphaproteobacteria express Mic60 to form their own bioenergetic subcompartments, demonstrating the permeance of Mic60’s form and function during prokaryotic and eukaryotic evolution. Yet, unlike virtually all aerobic eukaryotes, Mic60 is not encoded within the genomes of the multifarious protists that comprise the phylum Euglenozoa, including trypanosomes. Here, we show that Mic60 has been replaced in euglenozoans by two cryptic mitofilin domain-containing MICOS subunits, Mic34 and Mic40. Contrasting alphaproteobacterial and mitochondrial Mic60, these are not integral membrane proteins. Mic34 and Mic40 are as diverged from each other as both are to canonical Mic60. Reverse genetics revealed they are intertwined with the oxidative protein folding pathway required for mitochondrial–and crista–biogenesis, veiling a potential membrane remodeling role. Nevertheless, Mic34 binds phospholipid bilayers in vitro . Mic34 and Mic40 heterologous expression remodels gammaproteobacterial cytoplasmic membranes, like Mic60. Unexpectedly, Mic34 overexpression elaborates the simplified tubular mitochondrion of a Trypanosoma brucei life cycle stage with repressed oxidative phosphorylation. Furthermore, this activity was ablated by mutations to Mic34’s mitofilin domain that correspond to essential motifs found in yeast Mic60’s mitofilin domain. Thus, the mitofilin protein family is more diverse than originally supposed, with two of its structurally most divergent members altering the core of euglenozoan MICOS.