Geometric influences on the regional organization of the mammalian brain
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The mammalian brain is comprised of anatomically and functionally distinct regions. Substantial work over the past century has pursued the generation of ever-more accurate maps of regional boundaries, using either expert judgement or data-driven clustering of functional, connectional, and/or architectonic properties. However, these approaches are often purely descriptive, have limited generalizability, and do not elucidate the underlying generative mechanisms that shape the regional organization of the brain. Here, we develop a novel approach that leverages a simple, hierarchical principle for generating a multiscale parcellation of any brain structure in any mammalian species using only its geometry. We show that this approach yields regions at any resolution scale that are more homogeneous than those defined in nearly all existing benchmark brain parcellations in use today across hundreds of anatomical, functional, cellular, and molecular brain properties measured in humans, macaques, marmosets, and mice. We additionally show how our method can be generalized to previously unstudied mammalian species for which no parcellations exist. Finally, we demonstrate how our approach captures the essence of a simple, hierarchical reaction-diffusion mechanism, in which the geometry of a brain structure shapes the spatial expression of putative patterning molecules linked to the formation of distinct regions through development. Our findings point to a highly conserved and universal influence of geometry on the regional organization of the mammalian brain.