Clustered VEGF Nanoparticles in Microporous Annealed Particle (MAP) Hydrogel Accelerates Functional Recovery and Brain Tissue Repair after Stroke

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Ischemic stroke, a blockage in the vasculature of the brain that results in insufficient blood flow, is one of the world’s leading causes of disability. The cascade of inflammation and cell death that occurs immediately following stroke drives vascular and functional loss that does not fully recover over time, and no FDA-approved therapies exist that stimulate regeneration post-stroke. We have previously developed a hydrogel scaffold that delivered heparin nanoparticles with and without VEGF bound to their surface to promote angiogenesis and reduce inflammation, respectively. However, the inclusion of the naked heparin nanoparticles warranted concern over the development of bleeding complications. Here, we explore how microporous annealed particle (MAP) scaffolds functionalized with VEGF coated heparin nanoparticles can both reduce inflammation and promote angiogenesis - without the inclusion of free heparin nanoparticles. We show that our updated design not only successfully promotes de novo tissue formation, including the development of mature vessels and neurite sprouting, but it also leads to functional improvement in a photothrombotic stroke model. In addition, we find increased astrocyte infiltration into the infarct site correlated with mature vessel formation. This work demonstrates how our biomaterial design can enhance endogenous regeneration post-stroke while eliminating the need for excess heparin.

Article activity feed