Haplotype rather than single causal variants effects contribute to regulatory gene expression associations in human myeloid cells
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Genome-wide association studies typically identify hundreds to thousands of loci, many of which harbor multiple independent peaks, each parsimoniously assumed to be due to the activity of a single causal variant. Fine-mapping of such variants has become a priority and since most associations are located within regulatory regions, it is also assumed that they colocalize with regulatory variants that influence the expression of nearby genes. Here we examine these assumptions by using a moderate throughput expression CROPseq protocol in which Cas9 nuclease is used to induce small insertions and deletions across the credible set of SNPs that may account for expression quantitative trait loci (eQTL) for genes associated with inflammatory bowel disease (IBD). Of the 4,384 SNPs targeted in 88 loci (an average of 50 per locus), 439 were significant and further examined for validation. From these, 98 significantly altered target gene expression in HL-60 myeloid cell line, 74 in induced macrophages from these HL-60 cells, and 78 in induced neutrophils for a total of 201 validated effects (46%), 43 of which were observed in at least two of the cell types. Considering the observed sensitivity and specificity of the controls, we estimate that there are at least 150 true positives per cell type, an average of almost 2.4 for each of the 64 eQTL for which putative causal variants have been fine-mapped. This implies that haplotype effects are likely to explain many of the associations. We also demonstrate that the same approach can be used to investigate the activity of very rare variants in regulatory regions for 89 genes, providing a rapid strategy for establishing clinical relevance of non-coding mutations.