Microglial plasticity governed by state-specific enhancer landscapes
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Single-cell transcriptomic studies have identified distinct microglial subpopulations with shared and divergent gene signatures across development, aging and disease. Whether these microglial subsets represent ontogenically separate lineages of cells, or they are manifestations of plastic changes of microglial states downstream of some converging signals is unknown. Furthermore, despite the well-established role of enhancer landscapes underlying the identity of microglia, to what extent histone modifications and DNA methylation regulate microglial state switches at enhancers have not been defined. Here, using genetic fate mapping, we demonstrate the common embryonic origin of proliferative-region-associated microglia (PAM) enriched in developing white matter, and track their dynamic transitions into disease-associated microglia (DAM) and white matter-associated microglia (WAM) states in disease and aging contexts, respectively. This study links spatiotemporally discrete microglial states through their transcriptomic and epigenomic plasticity, while revealing state-specific histone modification profiles that govern state switches in health and disease.